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Abstract
The possibility of deriving the contact potentials between amino acids from
their frequencies of occurrence in proteins is discussed in evolutionary terms.
This approach allows the use of traditional thermodynamics to describe
such frequencies and, consequently, to develop a strategy to include in the
calculations correlations due to the spatial proximity of the amino acids and
to their overall tendency of being conserved in proteins. Making use of a
lattice model to describe protein chains and defining a ‘true’ potential, we test
these strategies by selecting a database of folding model sequences, deriving
the contact potentials from such sequences and comparing them with the
‘true’ potential. Taking into account correlations allows for a markedly better
prediction of the interaction potentials.

1. Introduction: the ‘quasi-chemical approximation’ revisited

The idea of obtaining the interaction energy between pairs of amino acids, in the form of a
contact potential, from the statistical analysis of known proteins has been developed in detail by
Miyazawa and Jernigan in 1985 [1]. Assuming that the contact formation can be regarded as a
chemical reaction, they make use of Boltzmann statistics to relate the frequencies of occurrence
of a given pair of amino acids in proteins to the associated contact energy (this is the so-called
‘quasi-chemical approximation’)4. This idea has been further developed in [13–16].

Since then, this method has undergone wide criticism, both from the point of view of its
soundness and of its implementation. Finkelstein and co-workers [2] challenged the validity of

4 Parallel approaches are those of Mirny and Shakhnovich [8], which optimize the Z score (a quantity related to the
energy gap between the native and first excited state of a protein sequence) simultaneously in a large set of different
proteins. Vendruscolo et al [9] and van Mourik et al [10] perform, with different methods, similar optimization,
under a zero-temperature approximation. Of course, several assumptions other than the validity of the Boltzmann
distribution need to be verified, such as the two-body character of the potential [6] and its square-well shape [11, 12, 5].
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the basic assumption of the method. They highlighted the fact that Boltzmann statistics arise as
a consequence of transitions between states of a physical system, while pairs of amino acids are
not free to move in the data set of proteins used to obtain the distribution of contacts between
pairs of amino acids. In other words, different contacts are not excitations of the same system.
Nevertheless, they suggest that contact probabilities still follow a Boltzmann distribution, but
for a different reason. Assuming that protein sequences are random, their contacts will also
be random, and a Boltzmann-like distribution of pair contacts arises as the ratio between the
Gaussian distributions associated with random energies. In this respect, Finkelstein and co-
workers interpret the temperature which characterizes this Boltzmann-like distribution as the
freezing temperature of the random energy model in conformational space (see also [3]). Ben-
Naim [4] has questioned whether the energy derived with statistical arguments corresponds to
any physical process. Thomas and Dill have emphasized the fact that, to derive a Boltzmann
distribution, one assumes that each pair of amino acids is independent of all other pairs [5], an
assumption which is not valid because of the high density of amino acids in proteins. Moreover,
they noted a possible problem in the fact that frequencies of occurrence are obtained counting
pairs of amino acids both in the same protein and in different proteins. They also show that
the temperature and the reference state (the zero-energy state) are ill-defined (see also [6, 7]).

It is our opinion that the analysis of amino acid pair distributions can be simplified
if considered in an evolutionary context. In fact, evolution is the very dynamical process
which controls which amino acids are in contact in the native conformations of proteins. The
elementary moves of such dynamics are mutations, deletions and insertions, and take place
on the timescale of millions of years. The misconception at the basis of the ‘quasi-chemical
approximation’ is the idea that the dynamical process which controls which amino acids are
in contact is the conformational change which opens or closes a contact, on the timescale
of picoseconds. This dynamics is indeed present, and controls the stability of a contact
(i.e. the probability that it is open rather than closed), but cannot be directly responsible
for the likelihood of the amino acids which build the contact.

In fact, the contact probabilities used to derive the contact energies are those calculated
in the native state (i.e. crystallographic or NMR structures) which are, by virtue of Anfinsen’s
paradigm [17], uniquely determined by the protein sequence. Consequently, the energy barrier
which a protein must overcome to change a contact with another one is that associated with a
change in the sequence (i.e. �kT , involving the whole replication machinery of the cell), the
associated timescale being much longer than that of protein conformational changes (which
take place at kT ).

From this viewpoint, we can obtain information on the contact frequencies by analysing
the dynamics in the space of sequences at fixed conformation, rather than that in the space of
conformations at fixed sequence. If one assumes that evolution has reached an equilibrium
state5, then the contact frequencies observed in proteins can be identified with the equilibrium
distribution of contacts associated with the underlying evolutionary dynamics. Whether we can
assume that the dataset of known protein sequences represents thermodynamical equilibrium is
a difficult issue. A suggestion that this is the case has been made by Rost in [18], noting that the
distribution of sequence similarities for all known proteins is approximately Gaussian, centred
around the random value 1/20. Note that, however, this suggestion has been questioned in [19].

In order to be quantitative, one has to specify a model for evolutionary dynamics. The
simplest model pictures an evolutionary step as a random mutation followed by a check on the
ability the new sequence has to fold (i.e. if the mutated protein can still fold to a unique native

5 This implies that the evolutionary dynamics is ergodic and that it had enough time to converge to an equilibrium
state.
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conformation the move is accepted, otherwise the new sequence is discarded). Moreover, one
can add an evolutionary bias toward low-energy proteins, assuming that more stable proteins
are selected with higher probability (see below). In other words, the protein dataset is produced
by subsequent mutations from a ‘parent’ folding sequence.

The selection rule, i.e. checking whether the mutated protein can fold, requires, in
principle, a lengthy exploration of conformational space (e.g. by molecular dynamics).
Fortunately, the selection rule can be further simplified. In fact, studies of minimal models
have shown that the folding ability of a protein sequence is mainly determined by its native state
energy [20–22]. Approximating the energy distribution of unfolded conformations by mean of
the random energy model [3] (i.e. assuming that the contact energies in unfolded conformations
are independent stochastic variables), it is possible to conclude that, if a sequence displays in
its conformational ground state an energy lower than a threshold Ec, determined by its length
and by statistical properties (average and standard deviation) of the interaction potential (thus
independent of the detailed sequence), then it is likely to fold into a unique native state (for a
model study, see [22]). Moreover, the lower the energy, the more stable the native state is.

A consequence of these findings is that each point of sequence space can be labelled with
a single quantity, namely the conformational ground state energy of the associated sequence,
rather than with a whole conformational energy spectrum (that, in principle, would be necessary
to assess the folding properties of a sequence). Evolution is then associated with energy
fluctuations (i.e. exchange of energy between the protein and an ideal external reservoir),
with the constraint that the native energy of a protein can never overcome the threshold
Ec. In accordance with classical thermodynamics, one can define a temperature Tevol which
controls the equilibrium average native energy and the fluctuations about the average [24].
This temperature, which is not related in any way to the conformational temperature of the
protein, has the meaning of an evolutionary pressure toward low-energy proteins.

One has now to make three caveats concerning the model of evolution discussed above.
First, it only takes into account the folding properties of a protein, but not other important
features such as functional requirements, binding sites, etc. Second, only point mutations are
allowed, implying, among other things, that neither the length of the protein nor the threshold
energy Ec change6. Third, it is important that the concentrations of different kinds of amino
acids are constrained, otherwise at low values of Tevol the system would display only those
amino acids with the lowest interaction energy elements, and the chain would look more like
a homopolymer (or oligopolymer) than like a protein. This would not only be unrealistic,
since proteins typically display comparable concentrations of the different types of amino
acids (at least in terms of orders of magnitude), but also would challenge the folding ability
of the protein, since the value of Ec depends on the average and standard deviation of the
interaction matrix, weighted on the concentration of the amino acids. If such concentrations
can vary, the value of Ec cannot be considered sequence-independent and the evolutionary
algorithm described above fails. In the worst scenario (i.e. very low Tevol with the Miyazawa–
Jernigan interaction matrix), the evolutionary algorithm would produce mostly homopolymers
composed of cysteine. To avoid this problem, we will fix (in section 4) the concentration of
different kinds of amino acids to their average values (cf [23])7.

In what follows we work out the distribution probability of amino acid contacts. Using
the standard derivation for closed systems (see, e.g., [25]), one can obtain the Boltzmann

6 A more realistic approach to protein evolution should allow for insertions and deletions, and thus for changes in
both the length of the chain and of the energy Ec. Such a generalization of the problem can easily be accounted for,
although in the following we will consider, for the sake of clarity, only chains of a fixed length.
7 Another solution is that of labelling each sequence with the Z score instead of with the native energy, like in [8].
However this would make the following calculation more complicated.
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distribution p({σ }) = exp[−E({σ })/T ]/Z for the probability of occurrence of a sequence
{σ }, E({σ }) being the associated native energy (with E({σ }) < Ec). Furthermore, one can
consider each contact of the protein as a subsystem which, on the evolutionary timescale, can
exchange energy (by mutations) with the rest of the protein, pictured as a heat bath. Making
use of the basic approximation that each contact is not correlated to the others, the probability
of observing a contact between amino acids of type ρ and τ at equilibrium is

p(ρ, τ ) = 1

Z
exp

[
−ε(ρ, τ )

T

]
, (1)

where ε(ρ, τ ) is the interaction energy and T is a temperature-like parameter which controls
the average energy of the contact. At equilibrium, the temperature of the system is equal
throughout and one can set T = T evol.

It can be noted that the evolutionary Boltzmann statistics describing the distribution of
contacts is different from the ‘quasi-chemical approximation’, because it takes place in the
space of sequences and not in that of conformations. It is also different from that derived
in [2], because it does not assume a protein database populated by random sequences. In
particular, the temperature which controls the distribution is not a conformational temperature,
but an evolutionary temperature.

The assumptions made to obtain equation (1) are that the system is at equilibrium, that the
contacts which build up a protein are uncorrelated and that the concentration of different types
of amino acids can vary at will. While the equilibrium condition displays some soundness [18],
the others are quite crude. In the following, we will discuss corrections to equation (1) to take
care of these problems and test the validity of these corrections within the framework of a
lattice model.

2. The lattice model

To test the validity of the approximation of equation (1) and to develop possible extensions, we
follow the approach of [5, 8, 10], where one chooses an interaction matrix εtrue(ρ, τ ) for model
proteins, create a dataset of folding sequences according to this interaction matrix, derive from
the sequence dataset the pair frequencies,and from these try to obtain the interaction energies by
means of relationships of the type given in equation (1) to be compared with the ‘true’ energies.

The model used for this purpose describes the protein as a chain of beads on the vertexes
of a cubic lattice [20–22]. We test three kinds of interaction matrices εtrue(ρ, τ ): two of
them are extracted from [1] (table 6, which we shall call MJ, and table 5, which we shall
call MJ2), and the other one is a symmetric matrix generated by extracting its elements at
random from a Gaussian distribution. All of them have been shifted and rescaled to display
zero mean and standard deviation of 30 (in units of hundredths of kTroom = 0.6kcal mol−1).
A particular feature of the matrix MJ2 is that it displays correlations between its elements, in
such a way that can be well approximated by the two lowest eigenvalue terms in a eigenvalue
decomposition [26] (naively speaking, most negative terms are concentrated toward one corner
of the matrix and the most positive toward the opposite corner). The matrix MJ has been
obtained by the matrix MJ2 subtracting the effects of the solvent and does not display any
feature which makes it distinguishable from a random matrix. The results obtained with the
MJ matrix are substantially identical to those obtained with the random matrix.

The dataset of sequences has been created fixing one (or more) compact structures and
generating sequences with a Monte Carlo algorithm at temperature T evol. The pair frequencies
f (ρ, τ ) are then calculated counting the relative occurrence of the contact between amino
acids of kinds ρ and τ in the whole dataset.



Deriving amino acid contact potentials 2555

−100 –50 0 50 100
ε true

−100

100

300

500

ε

T=20

T=30

T=80

Figure 1. The energies ε predicted from equation (1) as a function of the ‘true’ energies εtrue used
to design the sequences, for three different evolutionary temperatures T . Note that the energies are
determined except for an additive constant. The correlation coefficients are 0.92, 0.86 and 0.88
for values of Tevol of 80, 30 and 20, respectively. The associated slopes are 1.10, 1.10 and 1.02,
respectively.

3. Spatial correlations

Amino acids build complicated networks of interactions within globular proteins, networks
which inevitably cause correlations between contacts. As a consequence, equation (1) provides
a poor estimate of the interaction energies. In figure 1 the correlation between the ‘true’ energies
εtrue used to design the sequences (in the case of the Gaussian matrix) and those obtained from
equation (1), for different choices of the evolutionary temperature, is shown. An important
parameter to quantify the validity of the energy prediction methods is the root mean square
deviation (RMSD, i.e. the root of the reduced χ2) associated with a linear fit of the predicted
energies as a function of the ‘true’ energies, which accounts for the typical variation of the
predicted energies from the true ones. This parameter has to be compared with the energy
scale of the system, which is T evol. The values of RMSD associated with figure 1 are listed in
table 1.

In order to quantify spatial correlations we define the matrix

Gi j = 〈ε iε j 〉 − 〈εi〉〈ε j 〉, (2)

where εi is the total interaction energy of residue i with its neighbours (i.e. εi =∑
j ε(σi , σ j )�(|ri − r j |)), while the angle brackets indicate the thermodynamic average

performed at a temperature Tevol. The elements of the correlation matrix decrease exponentially
with respect to the distance �r ≡ |ri − r j | of the associated residues, allowing us to define a
correlation length λ as G(�r) ∼ exp(�r/λ). The values of λ as a function of the evolutionary
temperature are displayed in figure 2.

It has been shown in [22] that T evol ≈ 30 is the evolutionary temperature below which
good folder sequences are selected. One can notice that the correlation length λ is not negligible
below T evol ≈ 30. This is not completely unexpected, since it is reasonable that good folders,
unlike random sequences, display stabilizing long-range effects.
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Figure 2. The correlation length at different temperatures for the 80-mers model protein interacting
through the Gaussian distributed matrix.

Table 1. The RMSD (standard deviation of the residuals) for the case of the Gaussian matrix,
calculated in the Boltzmann approximation of equation (1) (‘Boltzmann’), in the approximation of
equation (4) (‘neighbours’) and in that of equation (5) (‘loops’).

T Boltzmann Neighbours Loops

15 15.9 7.0 7.2
20 17.7 5.0 5.3
30 20.2 5.1 3.3
50 15.2 1.9 2.6
80 14.0 1.7 2.6

Still lowering the evolutionary temperature below T ≈ 10, the system enters a phase in
which it is difficult to produce equilibrium distributions of sequences with the Monte Carlo
algorithm, and which resembles the glassy phase of infinite disordered systems. Since the
dynamics in glassy phases is very slow (see, e.g., [27]), it is unlikely that evolution can have
taken place below T ≈ 10, and consequently we will disregard this phase in the following
study. In the following we will develop a simple method to correct equation (1) in order to
account for such correlations.

If, instead of a single contact, one considers a subsystem composed of a contact and all its
nearest neighbours (see the inset in figure 2), the same argument used for the isolated contact
suggests that the set of these subsystems follows a Boltzmann distribution, the probability of
a contact between amino acids of the kinds ρ and τ resulting in (see also the appendix A)

p(ρ, τ ) = 1

Z

∑
γ1...γ6

exp(−β[ε(ρ, τ ) + ε(ρ, γ1) + ε(ρ, γ2)

+ ε(ρ, γ3) + ε(τ, γ4) + ε(τ, γ5) + ε(τ, γ6)]), (3)

where the sum is over all the neighbours of the two residues of interest and β ≡ 1/T , where T
is the energy scale of the system (which must be provided as an input). Note that equation (3)
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Figure 3. The energies ε predicted, taking into account the spatial correlations through equation (4)
as a function of the ‘true’ energies εtrue used to design the sequences for three different evolutionary
temperatures T . The correlation coefficients are 0.987, 0.988 and 0.998 for values of Tevol of 80,
30 and 20, respectively. The slopes of the linear fit are 0.99, 1.04 and 0.99, respectively.

refers, as an example, to a case where each of the amino acids of the pair has three further
neighbours (γ1, γ2 and γ3 are the neighbours of ρ, while γ4, γ5 and γ6 are the neighbours of
τ ), but any number of neighbours is acceptable. Under the approximation that each residue is
in contact with the same number 
 of other residues, one can rewrite equation (3) in the form

βε(ρ, τ ) = − log p(ρ, τ ) + (
 − 1) log

(∑
γ

e−βε(ρ,γ )

)

+ (
 − 1) log

(∑
γ

e−βε(τ,γ )

)
− log Z . (4)

This is a set of 20 × 20 implicit coupled equations which can be solved numerically to find the
interaction energies ε(ρ, τ ). The solution is determined except for the additive constant log Z ,
which cannot be determined by the set of p(ρ, τ ) alone (see also section 4). The physical
meaning of equation (4) is to take into account spatial correlations in the easiest way, assuming
a uniform distribution of amino acids in the neighbouring sites (see appendix A) and without
the need for calculating three- or more-body probabilities. Note that the approximation done
in equation (4) is not on the range of the correlations, but on the kind of coupling between
residues. In fact, the energies which compare on the left side of equation (4) are the ‘true’
energies of the system, so that the account for correlations propagate to the whole size of the
system.

We first analyse sets of 10 000 sequences interacting through the Gaussian matrix designed
on a compact conformation built out of 80 residues (that used in [20]). The dependence of the
results on the conformation (or conformations) used will be discussed in section 5.

The energies calculated solving numerically equation (4) through 50 000 iterations of a
steepest descent optimization algorithm are displayed in figure 3 as a function of the true
energies εtrue. The associated RMSD is listed in the third column of table 1. These values
have to be compared with the energy scale of the system, that is T evol. From these data it is
clear that equation (4) performs much better than the use of pure Boltzmann statistics.
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Figure 4. In the case of sequences interacting through the MJ2 matrix selected at T = 30, we
display the energy ε as a function of εtrue, calculated (a) through Boltzmann statistics (equation (1)),
(b) through the approximation of equation (4) and (c) through the approximation of equation (5).
The broken line indicates the steepness of the line ε = εtrue. The correlation coefficients, calculated
over the whole set, are 0.98, 0.93 and 0.88, respectively. Restricting the correlation coefficient only
to negative energies gives 0.987, 0.992 and 0.984, respectively.

A further refinement of the model consists in also taking into account the interaction
between nearest neighbours (i.e. between residues γ1 and γ4 and between γ3 and γ6 in the inset
of figure 2, and consequently in equation (3)). The result is

βε(ρ, τ ) = − log p(ρ, τ ) + log

(∑
γ

e−βε(ρ,γ )

)
+ log

(∑
γ

e−βε(τ,γ )

)

− log

(∑
πν

e−β(ε(ρ,π)+ε(π,ν)+ε(ν,τ ))

)
− log Z . (5)

This means considering that the amino acids neighbouring the contact of interest are not
distributed uniformly, but, more realistically, display a distribution which depends on their own
neighbours. The results, also listed in table 1, show that equation (5) is roughly equivalent in
the determination of the interaction energies to equation (4), although the numerical solution
of equation (5) is definitely slower.

Similar results are obtained for sequences interacting through the matrix MJ2. The
correspondence between the energies ε calculated in the three different ways discussed above
(equations (1), (4) and (5)) and the true energies εtrue is displayed in figure 4 for the temperature
T evol = 30. One peculiar feature of the results obtained from the MJ2 matrix is that the data
associated with the Boltzmann approximation (cf figure 4(a)), although reasonably correlated,
display an effective temperature which is approximately half of the evolutionary temperature
at which the sequences have been selected. This effective temperature could arise from
correlations present in the interaction matrix (cf appendix B), as suggested by the fact that
it does not appear in the case of the random matrix.

Moreover, for all three approximations there is a well-defined decrease in the quality of the
prediction at εtrue > 0. This is due to a substantial decrease in the statistics associated with the



Deriving amino acid contact potentials 2559

Table 2. The correlations between predicted and true energies for sequences interacting through
the matrix MJ2. The labels are the same as used in table 1. The value in the column ‘slope’ is the
slope of the best fit to a linear function of the data generated by equation (1). The rows labelled by
(E < 0) contain the result of fits considering only the negative values of εtrue.

Boltzmann
Neighbours

T RMSD Slope RMSD

15 11.9 1.7 11.9
15 (E < 0) 8.8 5.2
20 11.4 2.3 9.2
20 (E < 0) 8.6 4.7
30 9.9 2.3 6.4
30 (E < 0) 8.3 2.2
50 10.4 2.7 5.1
50 (E < 0) 8.4 1.8
80 11.5 2.9 3.8
80 (E < 0) 8.7 1.5

data in this range of energies. The different behaviour with respect to the random interaction
matrix arises because here some amino acids are intrinsically more attractive than others, due
to the order in the interaction matrix. Consequently, at low evolutionary temperatures, these
attractive amino acids appear more often than the others. This does not happen in the case of
the random matrix, where each amino acid interacts, on average, like any other. In other words,
different amino acids display different chemical potentials in the case of the MJ2 matrix, while
displaying the same chemical potential in the case of the random matrix.

The RMSD related to the Boltzmann approximation, listed in table 2, are calculated using
the effective temperature, which corresponds to a rescaling of the actual temperature by a
factor indicated in the fourth column of table 2 (i.e. the slope of the linear fit of the function
ε(εtrue)). While the features associated with the whole set of data are not very meaningful,
being affected by the lack of statistics discussed above, the features associated with the range
εtrue < 0 indicate a performance of the prediction methods comparable with that of the random
matrix. Note that, for all purposes, the detailed knowledge of the attractive energies is much
more critical that the knowledge of the repulsive energies.

The values listed in table 2 for εtrue < 0 indicate that the Boltzmann approximation
(equation (1)) is better in the MJ2 case than in the random case. In any case, the approximation
of equation (4) gives better results in both cases. The behaviour of the MJ matrix is identical
to that of the random matrix (data not shown).

Note that accounting for the correlations described in equation (4) can be easily integrated
into any algorithm which derives the potentials from pair statistics (e.g. [13, 14]). Algorithms
which optimize simultaneously the parameters which define the potentials, on the other hand,
account implicitly for correlations between amino acids in the process of energy optimization.
Nonetheless, the explicit treatment of such correlations seems to be fruitful. In the case of the
algorithm employed in [8], for example, the correlation coefficient between true and predicted
energies is 0.84, while that associated with our method is, in the worst case, 0.88 (see the
caption to figure 4).

4. Correlations due to amino acid conservation

Looking at the sequences generated at low evolutionary temperatures which produce the data
analysed in the previous section, one notes an unrealistic feature, namely that at low Tevol the
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frequencies of the different kinds of amino acids are extremely uneven, some of the proteins
displaying only a limited subset of all amino acids. Consequently, when working at high
evolutionary pressure, it could be desirable to constrain the relative concentrations of the
amino acids. Of course, in performing this kind of approach, one gives up obtaining the
concentration of amino acids as an emergent feature of the system and sets it by hand. The
reason why we follow this strategy is that the concentrations of amino acids observed in real
proteins are the result of a balance between different factors: not only the thermodynamical
requirement of displaying a native energy well below Ec, but also the need not to display too
many hydrophobic residues to prevent aggregation, to have enough amino acids of a given kind
to perform some biological task, etc. The model we employ is too simple to account for all
these effects, and accordingly we do not attempt to obtain the concentrations from the model,
but we fix it a priori.

Thus, we have repeated the above calculations using the matrix MJ2 and adding the
constraint that the concentration of each amino acid is constant and equal to each other
(this is a simplification, since different amino acids occur with different probabilities in
real proteins [23]: the generalization is straightforward). This constraint introduces nonlocal
correlations in the sequence, since the occurrence probability of a pair of amino acids now
depends on the presence of other amino acids of the same kind everywhere else.

In order to take into account these constraints, we employ a grand-canonical formalism,
introducing chemical potentials µα for each kind of amino acid α. The Boltzmann
(equation (1)) and loop (equation (4)) approximations become

βε(ρ, τ ) = − log p(ρ, τ ) + µρ + µτ − log Z (6)

βε(ρ, τ ) = − log p(ρ, τ ) + (
 − 1) log

(∑
γ

e−β(ε(ρ,γ )−µγ )

)

+ (
 − 1) log

(∑
γ

e−β(ε(τ,γ )−µγ )

)
+ µρ + µτ − log Z , (7)

respectively. The problem which now arises is the determination of the chemical potentials
(we will search for chemical potentials which make each kind of amino acid equiprobable: the
generalization is straightforward). For this purpose we will employ a mean field approximation,
where

µρ ≈ 1
20

20∑
τ=1

ε(ρ, τ ), (8)

that is, assuming that inserting an amino acid of a given kind into the system costs free energy
given by the average interaction of that amino acid with all other kinds.

In figure 5(a) is displayed the result obtained making use of the canonical Boltzmann
approximation (equation (1)) for sequences selected at T evol = 30. The correlation coefficient
is very poor (0.66) and the slope of the linear fit is 0.23, which gives an effective temperature
of T eff

evol = 30 × 0.23 = 6.9. The RMSD is 7.9, that is 1.14 times the effective temperature. In
figures 5(b) and (c) are displayed the results obtained with the grand-canonical formalism of
equations (6) and (7), respectively, with the chemical potentials calculated from equation (8).
While the grand-canonical Boltzmann approximation (6) gives a correlation coefficient of 0.89,
the grand-canonical loop approximation of equation (7) gives a correlation coefficient of 0.97.
The slopes of the linear fits are 1.02 and 0.98, respectively. The associated RMSD are 7.9 and
9.0, respectively, which are approximately one-quarter the energy scale of the system.

Although the approximation of equation (6) performs much better than the canonical
Boltzmann approximation (equation (1)), it performs essentially as well as the approximation
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Figure 5. The energies predicted from sequences interacting through the matrix MJ2 and in which
the amounts of different kinds of amino acids are kept fixed. The prediction is performed through
(a) equation (3), (b) equation (6) and (c) equation (7). The evolutionary temperature is Tevol = 30.
The correlation coefficients are 0.66, 0.89 and 0.97, respectively.

of equation (7). This could be due to the fact that the correlations arising from amino acid
conservation ignore the correlations associated with the local proximity of amino acids.

5. Database dependence of the results

In order to study what is the amount of sequences needed to obtain a good estimate of the
interaction energies, we have calculated the RMSD and the correlation coefficient as a function
of the number of sequences Nseq used. The energies are calculated by mean of equation (4) at
T = 30. The plot, shown in figure 6, displays a marked worsening of the predicting capability
of the algorithm around Nseq ≈ 100. Since each sequence displays 105 contacts between
its amino acid, it means that one needs ≈104 contacts to obtain reliable results. Note that at
Nseq ≈ 100 there are 9 pairs of amino acids out of 210 which never appear in the statistics, a
number which grows to 101 for Nseq ≈ 10 and to 162 for Nseq ≈ 1. All these pairs display
large, repulsive ‘true’ energies.

When studying real protein sequences one usually does not collect pair statistics from
many sequences8 folding to the same conformation, but rather from sequences folding to
different conformations. We have studied a set of 100 sequences, optimized on 10 different
80-mer compact conformations (10 sequences optimized on each conformation). The RMSD
is 13.1 and the correlation coefficient 0.90, to be compared with 13.3 found using a single
conformation. This suggests that there is no difference in using proteins with different native
conformations to collect pair statistics.

Repeating the same calculation using model proteins of different lengths (27, 36, 48
and 80) provides a RMSD of 16.2 and a correlation coefficient of 0.86. This slight under-
performance appears to be connected with the fact that the value of 
 in equation (4) depends
on the length of the protein, through the ratio of bulk to surface residues, and consequently

8 Of course, these should be statistically independent sequences, that is, in bioinformatics language, non-homologous
sequences.
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Figure 6. The RMSD (full curve, left axis) and the correlation coefficient (broken curve, right axis)
as a function of the number of sequences Nseq used to collect statistics, using the random matrix
and T = 30.

cannot be considered fixed. This problem becomes more serious in the case of real proteins,
where the continuous character of the degrees of freedom makes the coordination number of
residues more variable than in the case of lattice models. However, one could expect that this
is partially compensated by the fact that real proteins are typically longer than the lattice chains
we have employed, and consequently the ratio of bulk to surface residues is larger (at least,
for globular proteins). In the case of the set of proteins used by Miyazawa and Jernigan [1],
the mean coordination number is 10 and the standard deviation is 4. To reduce the standard
deviation one can, following [1], consider only interior residues, i.e. residues within 7 Å from
the centre of the protein, obtaining a mean coordination number of 6 with a standard deviation
of 1.7 (to be compared with the mean and average associated with lattice model proteins, i.e. 4
and 1.7, respectively).

To model evolution, we have assumed a constant evolutionary temperature, which also sets
the energy scale of the resulting interaction matrix. While that lack of knowledge on the detailed
value of this temperature causes no problem in the efficiency of equation (4), since the energies
are simply rescaled according to T evol, problems arise if the set of sequences is selected making
use of different temperatures (which is quite a realistic situation). Using a dataset composed of
333 sequences selected at T evol = 20, 333 sequences selected at T evol = 30 and 333 sequences
selected at T evol = 50, we obtain an effective temperature of T evol = 24.7, a RMSD of 7.3
(instead of 3.3, see table 1) and a correlation coefficient of 0.95 (instead of 0.99).

6. Conclusions

We have shown that, looking at the set of proteins from an evolutionary point of view, it is
possible to obtain contact energies between amino acids in a sound way, making use of standard
thermodynamics (although used in the context of finite systems). This approach also allows
us to understand what are the limitations in the approximations of the method, such as, for
example, the presence of correlations between amino acids, and to develop corrections to those
approximations.
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For sequences generated without any constraint on their composition, accounting for
correlations allows us to decrease the RMSD from 20.2 to 5.1 in the case of the matrix MJ
and from 8.3 to 2.2 in the case of the negative elements of the matrix MJ2 (the correlation
coefficients increasing from 0.86 to 0.99 and from 0.98 to 0.99, respectively). Constraining
the composition of proteins, the RMSD (relative to the energy scale T eff

evol) decreases from
1.1 to 0.2 in both the case of the grand-canonical independent-contact approximation and of
the grand-canonical formalism with correlation corrections (the correlation coefficients being
0.66, 0.89 and 0.97, respectively).

Of course, there are still strong approximations in this approach, such as the step shape of
the potential and its isotropic character. On the other hand, these are computational limitations
which do not undermine the soundness of this approach, being easy to extend to situations
displaying more complicated shapes of the potential function (see,e.g., [11]). Another problem
which has not been dealt with is the determination of the zero of the energies (i.e. the quantity
−T log Z ). This is a key issue when one wants to use these potentials to determine, for
example, binding constants, but it is less critical in folding studies. Anyway, the determination
of this parameter is something which cannot be done from the contact probabilities alone, but
requires further ingredients, and consequently goes beyond the purpose of the present work.

It is interesting to repeat the calculations performed by Miyazawa and Jernigan, deriving
the frequencies of occurrence of amino acid pairs in the same database of real proteins used by
them [1]. Comparing the energies obtained making use of the Boltzmann-statistics approach
(i.e. equation (1)), in the spirit of the derivation of [1]9 with the corrections discussed above,
we obtain energies which are substantially different from theirs. Taking care of the spatial
correlations (equation (4)), we obtain a set of energies whose correlation parameter with the
Miyazawa–Jernigan set is 0.91 and whose RMSD is 0.28T . In also taking into account the
correlations due to amino acid conservation (equation (6)) the correlation coefficient becomes
0.96 and the RMSD 0.17T .

Appendix A

If one assumes that a protein is a closed system, the equilibrium probability for a sequence
σ1, σ2, . . . , σN is given by

p({σi }) = 1

Z
exp

[
−β

∑
ε(σi , σ j )�(|ri − r j |)

]
, (A.1)

where �(|ri − r j |) is a contact function which contains the information about the coordinates
{ri } of the (fixed) native conformation. Since we are interested in the probability of a single
contact (say, between σi and σ j ), we can make the interaction ε(σi , σ j ) explicit, as

p(σi , σ j ) = 1

Z
e−βε(σi ,σ j )

∑
σk ,σl ,...

exp[−β(ε(σi, σk) + ε(σk, σl) + · · ·)]. (A.2)

Focusing our attention on the nearest neighbours (e.g. k) of the i th and j th contacts, we obtain

p(σi , σ j ) = 1

Z
e−βε(σi ,σ j )

∑
σk

e−βε(σi ,σk )

×
∑

σl ,σm ,...

exp[−β(ε(σk, σl) + ε(σl, σm) + · · ·)] + · · · (A.3)

which can be shortened to
9 Disregarding in this comparison the corrections done in [1] to account for the effects of the solvent.
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p(σi , σ j ) = 1

Z
e−βε(σi ,σ j )

∑
σk

e−βε(σi ,σk )q(σk) + · · · (A.4)

where q(σk) ≡ ∑
σl ,σm ,... exp[−β(ε(σk, σl)+ ε(σl, σm)+ · · ·)] is proportional to the probability

that the kth site of the protein is occupied by amino acid σk due to the effect of all other residues
of the protein except that in the i th site.

The approximation of equation (5) consists in assuming that q(σ ) = 1, meaning that each
kind of amino acid has the same probability of occupying a site in contact with the pair i − j
under study.

Appendix B

The existence of an effective temperature arises from the correlations present in the correlation
matrix MJ2. To illustrate this point, consider the example of an interaction matrix which
emphasizes the hydrophobic character of the amino acids, in the form ε(ρ, τ ) = x(ρ) + x(τ ).
Then equation (3) becomes

p(ρ, τ ) = 1

Z
exp

[
−
(x(ρ) + x(τ ))

Tevol

](∑
γ

e−x(γ )/Tevol

)2(
−1)

, (B.1)

which approximates a Boltzmann distribution with an effective temperature T eff
evol ≡ Tevol/


smaller than the real temperature Tevol.
This is the simplest kind of correlation which could affect the system. It has been suggested

in [26] that the interaction matrix MJ2 has the form ε(ρ, τ ) = x(ρ) + x(τ ) + λx(ρ) · x(τ ),
corresponding to considering only the first two terms in the eigenvalue decomposition of the
matrix. This, or more complicated, kinds of correlation, cannot be accounted for analytically
but are likely to be responsible for the appearance of an effective temperature.
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